As winter approaches, pretty much every public health expert I follow is anticipating a COVID-19 surge. The size and severity of that surge may depend in part on SARS-CoV-2 variants. As a result, experts are closely watching a few current variants that might lead to faster COVID-19 spread this winter. Here’s a review of what’s circulating right now, what to watch for in the coming weeks, and how our public health system is tracking the variants.
This week, the health department in New York City, where I live, announced that they’d identified new variant BA.2.86 in the city’s wastewater. I covered the news for local outlet Gothamist/WNYC, and the story got me thinking about how important wastewater surveillance has become for tracking variants.
Last week, I introduced you to BA.2.86, a new Omicron variant that’s garnered attention among COVID-19 experts due to its significant mutations. We’ve learned a lot about BA.2.86 since last Sunday, though there are many unanswered questions to be answered as more research is conducted.
Last week, several variant experts that I follow on Twitter started posting about a new SARS-CoV-2 variant, first detected in Israel. They initially called it Omicron BA.X while waiting for more details to emerge about the sequence; it’s now been named BA.2.86.
Marc Johnson, a molecular virologist and wastewater surveillance expert at the University of Missouri, recently went viral on Twitter with a thread discussing his team’s investigation into a cryptic SARS-CoV-2 lineage in Ohio. I was glad to see the project get some attention, because I find Johnson’s research in this area fascinating and valuable for better understanding the links between coronavirus infection and chronic symptoms.
COVID-19 spread continues to trend down in the U.S., though our data for tracking this disease is now worse than ever thanks to the end of the federal public health emergency. If newer Omicron variants cause a surge this summer, those increases will be hard to spot.
GISAID, the global database of virus sequences, has faced a lot of criticism recently from the virologists and bioinformaticians who rely on it—potentially hindering responses to future virus outbreaks.
XBB.1.5 is the latest Omicron subvariant to spread rapidly through the U.S. It is, of course, more transmissible and more capable of evading immunity from past infections than other versions of Omicron that have gone before it, as this lineage continues mutating. Scientists are still learning about XBB.1.5; it emerged from the U.S. during the holiday season, which has posed surveillance challenges. But we know enough to say that this variant is bad news for an already overstretched healthcare system.
Last month, the CDC started publishing data from a surveillance program focused on international travelers coming into the U.S. I talked to bioinformatics experts involved with the program to learn more about how it works.